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It is shown that for any t > c,, log n linear bases B, , . . . . B, of ZF their union (with 
repetitions) lJi=, Bi forms an additive basis of Zi; i.e., for any XEZ~ there exist 
A, c B,, . . . . A, c B, such that x=x:=, x.,.,,, y. ‘rJ 1991 Academic Press, Inc. 

1. INTRODUCTION 

Let Z; be the n-dimensional linear space over the prime field Z,. An 
additive basis of Z; is a multiset {x,, . . . . x,} c Z;, such that any XE Z; is 
representable as a Ckl combination of the x;s. Let j(p, n) denote the mmi- 
ma1 integer t, such that for any t (linear) bases B,, . . . . B, of Z;, the union 
(with repetitions) vi= r Bi forms an additive basis of Z;. 

The problem of determining or estimating f(p, n), besides being 
interesting in its own right, is naturally motivated by the study of universal 
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flows in graphs (see [JLPT]). The authors of [JLPT] conjectured that 
f(p, n) is bounded above by a function of p alone. 

Clearly f(~, n) > p - 1, as the union of p-2 identical copies of the same 
basis does not form an additive basis. For p > 3 and n > 2, this trivial lower 
bound may be improved to ,f(p, n) 2 p. It clearly suffices to show this for 
n=2.Let {a,,~,} beanybasisofzi, and consider p-2 copies of (a,, a2 > 
and one copy of {al + a,, a, -a2}. As -a, is not in the additive span of 
these p - 1 bases we obtain f( p, 2) > p. 

In this paper we give two proofs of the following. 

THEOREM 1.1. f(p, n) < c(p) log n. 

In Section 2 we use exponential sums to show that f(p, n) d 
1 + (p2/2) log 2pn. The algebraic method in Section 3 gives the somewhat 
better bound f(p, n) < (p - 1) log n + p - 2. The final Section 4 contains 
some concluding remarks and open problems. 

2. ADDITIVE SPANNING AND EXPONENTIAL SUMS 

Let B,, . . . . B, be any t > (p2/2) log 2pn bases of Z;. Denote by 

IX 1 , ..., x,}, m = tn, their union with repetitions, and for any x E Z;, let 
N(x)= I{(& , ) . ..) Em): CT= 1 EiXj = x, Ei E (0, 1) > 1. 

We shall show that N(x) > 0 for all x E Z;. For x, YE Z;, .X .y is their 
standard inner product, and for a E Z, let e(a) = e2niu’p. 

Following Baker and Schmidt [BS, p. 4711 we represent N(x) as an 
exponential sum, 

N(x) = c ~~~=~e(Y’(j~,6,Xj--~)) I:E{O.I}*P 

=$Ee(V-) 1 e(y- f &jxj) 
EE {O,l}“’ 

=-$jF(jT) i ... i i’e(ejy.xj) 

P El =o a,=0 j=l 

Therefore 

(2.1) 
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(The same estimate is also used in CBS].) Next we estimate the right hand 
side of (2.1). For any fixed basis B of Z;, and y E Zp” let P,(y) = 
I-LB I(1 + 4u .b))Pl. 

Since P&) depends only on the list of inner products (y . b : b E B), it 
follows that the multiset {P&): y E Z;} is independent of the choice of 
the basis B. Choosing B = {b,, . . . . 6,) to be the standard basis of Z;, and 
noting that for y = (y, , . . . . y,,) 

we obtain 

c 1 fi l+eyxq= c fi P,(y) .vEZ;: j=l .VEZ;: i=l 

1 n 
< 1 + 2n ( > < er’*. 

Combining (2.1) and (2.2) we obtain 

I I 
iv(x)-? <$(e”‘-l)<$. 

(2.2) 

Hence N(x) > 0 for all x E Z;. 1 

3. PERMANENTS AND VECTOR SUMS 

In this section we present a second proof of Theorem 1.1, with a some- 
what better estimate for c(p). Specifically, we prove the following proposi- 
tion. 

PROPOSITION 3.1. Let A 1 = {a”, . . . . _a’“}, A, = {a*‘, . ..) cp}, . ..) 
A, = {a”, . . . . a”} be I bases of the vector space Zi. If 

(l-&)'--P+2n<l 
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then for any vector b E Zi: there are E,, E (0, 1 ) ( 1 < i < I, 1 < j < n ), such that 
C,. j E~& = b. In particular, the conclusion holds provided I > (p - 1) log n + 
p - 2. 

The proof presented here differs considerably from the one given in 
Section 2 and is based on some simple properties of permanents over finite 
fields. The basic method resembles the one used in [AT], but several 
additional ideas are incorporated. 

It is convenient to split the proof into several lemmas. We start with the 
following simple lemma (which appears in a similar context in [AFK]). 

LEMMA 3.2. Let P= P(x,, . . . . x,) be a multilinear polynomial with m 
variables x, , . . . . x,, over a commutative ring with identity R; i.e., 
P=C Uc {l,...,m) aCf ’ Klie U *‘i> where a, E R. Zf P(xl , . . . . x,) = 0 for each 
(x 1, ..., x,) E (0, 1 },’ then P E 0, i.e., a, = 0 for all U c { 1, . . . . m}. 

Proof. We apply induction on m. The result is trivial for m = 1. 
Assuming it holds for m - 1 we prove it for m. Clearly P(x, , . . . . x,) = 
p, bl 3 . . . . x,+ ,) X, + P2(x,, . . . . x,, _ ,), where P, and P, are multilinear 
polynomials in x1 , . . . . x,, ~ , . Moreover, it is easy to see that P, and P, 
satisfy the hypotheses of the lemma for m - 1. By the induction hypothesis 
P, E P, = 0, completing the proof. 1 

The next lemma shows a connection between a permanent of a matrix 
and the possible sums of subsets of its set of columns. This connection is 
crucial for our proof. 

LEMMA 3.3. Let A = (a,,) be an m by m matrix over the finite prime 
field Z,. Suppose that Per(A) # 0 (over Z,,). Then for any vector 
_c = (Cl) . ..) c,)EZ~ there are E,, . . . . E,E (0, l} such that I,?=, Eja, #cj for 
all 1 6 id m. In other words, for any vector _c there is a subset of the columns 
of A whose sum differs from _c in each coordinate. 

Proof Suppose the lemma is false and let A = (aji) and _c be a 
counter-example. Consider the polynomial P = P(x, ) . ..) x,,) = 
ny= 1 (cJ’=, aqxi- ci). By assumption, P(x,, . . . . x,) =0 for each 
(x 1, . . . . x,)E {0, l}“. Let B=P(x,, . . . . x,) be the multilinear polynomial 
obtained from P by writing P as a sum of monomials and replacing each 
monomial aiini,o xf, where UE { 1, . . . . m} and Jj>O, by a, njeuxi. 
Clearly P(x,, . . . . x,)= P(x,, . . . . x,) =0 for each (xi, . . . . X,)E (0, I}“. By 
Lemma 3.2 we conclude that P E 0. However, this is impossible, since the 
coefficient of ny= i xi in P (which equals the coefficient of that product 
in P) is Per A # 0. This completes the proof. i 

For a (column) vector _o = (vi, . . . . u,) E Z; let us denote by _o* = g*(p) the 
(column) vector in Zp- ‘jn defined by p;“l- ,jn+ i= v, for all 1 <i< p - 1, 
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1 < j< n. Thus _v* is simply the tensor product of _v with a vector of 
(p - 1) 1 ‘s. Clearly _v * = g*(p) depends on _v as well as on p, but since p 
remains fixed during this section we usually omit it and simply write _v*. 

A simple corollary of Lemma 3.3 is the following. 

COROLLARY 3.4. Let a1 aCP-‘ln he (p- 1)n vectors in 2;. Let A be _ 3 -..3 _ 
the (p - 1 )n by (p - 1 )n matrix whose columns are the vectors 
a1 *, . ..) ,(P- ‘In *. If Per A # 0 then any vector b E 2; is a sum of a certain 
subset of the vectors a’, . . . . a’p-l)“. 

Pro~J Let _c = (c, , . . . . ccp _ I ,,) E 2: ~ ‘jn be a vector satisfying 

b&l;;J, 
.: l<i<p-l}=Z,\(b,} for eachj, l,<j<n. By Lemma3.3 

1, . . . . E~~~~)~E(O,~} such that for any l<i<p-1 and any 
16jGn 

(P- ‘)n 

However, since the left hand side in the last equality is simply XI<; ‘jn gILI/! 
this shows that c&“” 
cl”=; lb 

E,@; # 2, \ (bj} for each 1 < j < n. Consequently, 
E,G’=~, completing the proof. 1 

The last corollary impiies that in order to prove Proposition 3.1 it suf- 
fices to show that from any sequence of 1. n vectors consisting 1 bases of Z; 
one can choose (p - l)n distinct members _d’, . . . . dCp--lJn of the sequence 
such that the permanent of the matrix whose columns are d’ *, . . . . _dCp- l)‘* 
is nonzero (over Z,). In what follows we show that this is always possible 
provided (3.1) holds. 

LEMMA 3.5. Let D = {d’, . . . . d”) be a basis of ZE, and let A, be a 
(p - 1)n by (p- 1)n matrix whose columns are the vectors p’ *, . . . . d”‘, each 
appearing p - 1 times. Then Per A, # 0. 

Proof: Let E= (_e’, ,.., _e”) be the standard basis of Z,“, and let A, be the 
( p - 1 )n by (p - 1 )n matrix whose columns are _el *, ..,, _e” *, each appearing 
(p - 1) times. One can easily check that Per A, is simply the number of 
perfect matchings in the union of n pairwise disjoint complete bipartite 
graphs K,- ,.*- I9 which is ((p - l)!)” # 0 (in 2,). Since D is a basis, each 
column of A E is a linear combination of the columns of AD. By the multi- 
linearity of the permanent function it follows that Per A, is a linear com- 
bination (over Z,) of permanents of matrices whose columns are columns 
of A,. Since Per A,#O, we conclude that there is a (p- 1)n by (p- 1)n 
matrix h4, each column of which is d’* for some 1 <i 6 n, satisfying 
Per M # 0. However, if the same column appears in M p times or more, 
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than Per M is divisible by p !, and is thus 0. It follows that no column 
appears in M more than (p - 1) times, and hence M equals AD up to a 
permutation of the columns. Thus Per A ,, = Per A4 # 0, completing the 
proof. 1 

LEMMA 3.6. Let A, = (Al’, g12, . . . . gl”J, . . . . A,= {a”, a”, . . . . &} he I 
bases of Zi and let S=(-s,,...,-,,, s ) be the sequence of length 1. n of vectors 
in Z(p-lln given by s~~~,,~+~=#* 
for &me integer h 

for all 1 < i < I, 1 d j < n. Suppose that 

(1--&)‘-” .(p-l).n<h+l. (3.2) 

Then there are (p - 1)n distinct indices 1 < i, < i, < . . < i,,- , ,,, < In such 
that the matrix whose columns are {sii: 1 < j 6 (p - 1 )n} has a nonzero 
permanent. 

Proof: Given a (p - 1 )n by (p - 1 )n matrix B whose columns are mem- 
bers of S, we call a column of B a repeated column if the same member of 
S appears in at least one additional column of B. Let c(B) denote the total 
number of repeated columns of B. Our objective is to construct a matrix 
with no repeated columns whose permanent is nonzero. To this end, we 
construct a sequence of matrices B,, B,, . . . . with nonzero permanents as 
follows. Let B, be the (p - 1 )n by (p - 1 )n matrix whose columns are 
Sl, “‘> _s,? each appearing (p - 1) times. By Lemma 3.5 Per B, # 0, and 
clearly, all the (p - 1 )n columns of B, are repeated columns. Since A 2 is a 
basis, each column of B, is a linear combination of _s, + , , . . . . szn. Let us 
replace all but one of the p - 1 occurrences of each _s, in B, by the linear 
combination of _s, + i , . . . . 32n expressing it. By the multilinearity of the 
permanent function, this enables us to write Per B, #O as a linear com- 
bination of permanents of matrices whose columns are all from the set 
(8,) . . . . _s~“}. Obviously, at least one of these matrices has a nonzero perma- 
nent. Let B, be such a matrix. Then, there are at least n nonrepeated 
columns of B,, since each of the n vectors _s,, . . . . _s, appears precisely once 
in it. Hence, c(B2)< (1 - l/(p- l))(p- 1)n. It is also clear that no si 
appears more than p - 1 times as a column of B,, as Per(B,) # 0. Assume, 
by induction, that we have already constructed, for each i 6 k, a (p - 1 )n 
by (p- 1)n matrix Bi+ 1, each column of which belongs to the set 
_Sl? . . . . _sCi+ iJn, satisfying 

Per(B,+ i) # 0 and c(B,+,)4(l-&)i(p-l)n. (3.3) 

Let us show that if k + 2 < 1 we can construct a matrix Bk+2 with the same 
properties. If c( Bk + i ) = 0 simply take Bk + 2 = Bk + , . Otherwise, replace 
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each occurrence of each repeated column of B,, 1 but one, by a linear com- 
bination of _s(, + Ijn + , , . . . . so + 2Jn and apply, as before, multilinearity to 
obtain a matrix B, + 2 with a nonzero permanent. Since no repeated column 
can appear in B, + , more than p - 1 times, we conclude that 

In particular, taking i= I- h, it follows from (3.2) and (3.3) that there is 
a matrix BIAhtl, each column of which belongs to the set sl, . . . . 3(/e-h+ L,,2 
7;; that per(B,_,,+,)#O and c(B ~-h+*)<(l-ll(P-l))T~h(P-l)n< 

Thus B,-h+ I has at most h repeated columns. Denote these columns by 
ty, b’-‘, . ..) b/-h+‘. For each i, 0 < i < h - 2, let us express b’- i as a linear 
combination of s 

-.(I-i-I)“+ 13 “‘2 _S(I--iIn’ Applying multilinearity once more 
we obtain a matrix with nonzero permanent and no repeated columns. This 
completes the proof. 1 

We are now ready to prove Proposition 3.1. Given the I bases A,, . . . . A,, 
where I satisfies (3.1), we apply Lemma 3.6 with h = p - 2 to conclude that 
there is a set Z of (p - 1 )n distinct double indices ij such that the matrix 
whose columns are {a” *: zj E Z} has a nonzero permanent. By Corollary 3.4, 
this implies that for any vector b E Z; there are Ed E (0, 11, (ij E I), such that 
c- ,,El E#= _b. This completes the proof of Proposition 3.1. Observe that 
we actually proved a somewhat stronger result; if I satisfies (3.1) then it is 
possible to choose a fixed set of (p - 1)n of our vectors such that any 
b E Z; is a sum of a subset of this fixed set. 1 

4. CONCLUDING REMARKS AND OPEN PROBLEMS 

The main open problem is, of course, whether the union of any c(p) 
linear bases of Z; is an additive basis, where c(p) depends on p alone. The 
following two results, which follow from our previous proofs of 
Theorem 1.1, suggest that this, indeed, may be the case. 

PROPOSITION 4.1. For any I bases B,, . . . . B, of Z;, when I b p log (pn) 
there are subsets AicBi (l<i<l), such that Cf=JA{l<(p-1)n and 
(J := 1 Ai (with repetitions) is an additive basis of Zi. 

PROPOSITION 4.2. Let S= (sl, s2, . . . . s,) be a sequence of vectors in Z; 
and suppose that each subsequence of I - (p - 1 )n members of S linearly 
spans Zi. Then S is an additive basis of Zi. 

582a/57/2-4 
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The following conjecture about permanents would imply, if true, that 
m n) 6 P. 

CONJECTURE 4.3. For any p nonsingular n by n matrices A,, A,, . . . . A, 
over Zp, there is an n by p . n matrix C such that 

A,A, ... A, 

A,A, ... A, 

Per [ 1 i ! # 0. 
A,A2 ... A, 

C 
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